Normalisation for the Fundamental Crossed Complex of a Simplicial Set
نویسندگان
چکیده
Crossed complexes are shown to have an algebra sufficiently rich to model the geometric inductive definition of simplices, and so to give a purely algebraic proof of the Homotopy Addition Lemma (HAL) for the boundary of a simplex. This leads to the fundamental crossed complex of a simplicial set. The main result is a normalisation theorem for this fundamental crossed complex, analogous to the usual theorem for simplicial abelian groups, but more complicated to set up and prove, because of the complications of the HAL and of the notion of homotopies for crossed complexes. We start with some historical background, and give a survey of the required basic facts on crossed complexes.
منابع مشابه
Vertex Decomposable Simplicial Complexes Associated to Path Graphs
Introduction Vertex decomposability of a simplicial complex is a combinatorial topological concept which is related to the algebraic properties of the Stanley-Reisner ring of the simplicial complex. This notion was first defined by Provan and Billera in 1980 for k-decomposable pure complexes which is known as vertex decomposable when . Later Bjorner and Wachs extended this concept to non-pure ...
متن کاملCohen-Macaulay-ness in codimension for simplicial complexes and expansion functor
In this paper we show that expansion of a Buchsbaum simplicial complex is $CM_t$, for an optimal integer $tgeq 1$. Also, by imposing extra assumptions on a $CM_t$ simplicial complex, we provethat it can be obtained from a Buchsbaum complex.
متن کاملNew methods for constructing shellable simplicial complexes
A clutter $mathcal{C}$ with vertex set $[n]$ is an antichain of subsets of $[n]$, called circuits, covering all vertices. The clutter is $d$-uniform if all of its circuits have the same cardinality $d$. If $mathbb{K}$ is a field, then there is a one-to-one correspondence between clutters on $V$ and square-free monomial ideals in $mathbb{K}[x_1,ldots,x_n]$ as follows: To each clutter $mathcal{C}...
متن کاملInvariance of the barycentric subdivision of a simplicial complex
In this paper we prove that a simplicial complex is determined uniquely up to isomorphism by its barycentric subdivision as well as its comparability graph. We also put together several algebraic, combinatorial and topological invariants of simplicial complexes.
متن کاملCrossed Simplicial Groups and Their Associated Homology
We introduce a notion of crossed simplicial group, which generalizes Connes' notion of the cyclic category. We show that this concept has several equivalent descriptions and give a complete classification of these structures. We also show how many of Connes' results can be generalized and simplified in this framework. A simplicial set (resp. group) is a family of sets (resp. groups) {Gn}n>0 tog...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006